
System Design of Distributed
Search System in Java

(project and notes from Udemy course)

copyright ⒸHarrisonLL

Frontend server (port 9000)

1. Demo

Backend Server:
1 master node on port 8080, 3 worker nodes on port 8081, 8082, 8083

2. System Design

ZooKeeper Level

- Store all registered node address

- Reelect Leader once a master node failed

Http requests,
Using java serializable object (in
byte array format)

Worker nodes:

Compute term frequency of passed
documents for all search terms

Master node:

Split computing task by
documents.

Aggregate to compute
inverse document
frequency and sort the
score upon receiving
results from workersFrontend Server:

Web based UI in JS & html

User types search input

Workers
Service
Registry

Coordinators(Ma
ster) Service
Registry

Read from document repository
(File System)

Http requests,
Using Protocol Buffer (due
to language compatibility)

ZooKeeper Service Registry
Actual Node (communicating thru getChildren, getData
NodeChildrenChanged to Znode)

Permanent Znode (upon reconnection, node keeps all data)

Ephemeral Znode (upon reconnection, node is deleted)

Node stores address info

/service_r
egisgry

/service
_regisgr
y/node1

/service
_regisgr
y/node2

/service_
regisgry/
node3

/service_
regisgry/
node4

3. Side Notes
Master-Worker architecture:
Leader Reelection Algorithm

Once a master node fails, the service registry must reelect a new leader.

If all nodes register a watcher process to listen to all the other nodes, the cost will be huge.

Instead, we have a cost efficient way by registering a watcher for each node to only listen to its predecessor. This way we only need to maintain a sorted
list, once new node joins or the failed node rejoins the system, increase its index.

The algorithm goes:

```

sort zookeeper node by index
if the node being watched failed is leader:

Its watcher becomes the new leader

else:

Find the node’s predecessor and register a new watcher

```


3. Side Notes
Some thoughts on the project

- In real case, the master node and worker nodes are usually machines, rather
than a process. This system design simulates the situation where servers
communicates through http.

- It is possible that the file system locates at another physical server or any
cloud server. The communication would not be simple as retrieving files in
local computer. Http request should be implemented.

- In terms of scaling of service, it is possible that numbers of users using the
service at the same time, then the design needs load balancer between 1)
user and frontend service, and 2) frontend service and backend service.

3. Side Notes
Network Communication Choices

- Json is most common
- Human readable but no strict schema
- Msg is in plain text, so its network overhead is larger than binary array

- Protocol Buffer is another (Google)
- The benefit is speed and easy communication between different programing languages

 - Serializing Object
- Java Serializable object: Serializable interface

- Python: pickle package

…

- The benefit is having a smaller overhead and clear schema

