System Design of Distributed
Search System in Java

(project and notes from Udemy course)

copyright ©HarrisonLL

1. Demo

@® localhost:9000 h % @B N

line.. 8@ 77K LeetCode.. KJ Journal| AllEntries) LidingLi/Granatum... KX Linkedin DE training (& MLOps training & StrataScratch | avalon_access m move_avalon

Insert Your Search Query

llrene Adler ‘

Maximum Results:

Minimum Score: \ |

Document Score
The Adventures of Sherlock Holmes 100
The Importance of Being Earnest 13
A Tale of Two Cities
The Count of Monte Cristo
War and Peace
Alice’s Adventures in Wonderland
Pride and Prejudice
The Adventures of Tom Sawyer
Metamorphosis
Grimms’ Fairy Tales
Heart of Darkness

. PO TR e & o PRESCRRR SO i SRR

Frontend server (port 9000)

o

>)O O OO OO OoOOo

(base) harrisonli@Harrisons-MacBook-Pro-2 DistributedSearch % java -jar target
/distributed.search-1.0-SNAPSHOT- jar-with-dependencies. jar 8080

1og43:WARN No appenders could be found for logger (org.apache.zookeeper.ZooKee
per).

1log4j:WARN Please initialize the log4j system properly.

Tog43:WARN See http://logging.apache.org/1og4i/1.2/faq. html#noconfig for more

info.
Successfully connected to Zookeeper
znode name /election/c_0000000017
I am the leader
The cluster addresses are: []
Registered to service registry
The cluster addresses are: [http://localhost:8081/task]
The cluster addresses are: [http://localhost:8081/task, http://localhost:8082/
task]
The cluster addresses are: [http://localhost:8081/task, http://localhost:8082/
083/task]
: sherlock

all the documents
: alice

all the documents
: Irene Adler

Calculating score for all the documents

Backend Server:
1 master node on

(base) harrisonli@Harrisons-MacBook-Pro-2 DistributedSearch % pwd
/Users/harrisonli/IdeaProjects/DistributedSearch

(base) harrisonlieHarrisons-MacBook-Pro-2 DistributedSearch % java -jar target
/distributed.search-1.0-SNAPSHOT-jar-with-dependencies.jar 8081

Tog4j:WARN No appenders could be found for logger (org.apache.zookeeper.ZooKee

per).

Tog4j:WARN Please initialize the log4j system properly
1og4]:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more

info.

Successfully connected to Zookeeper
znode name /election/c_0000000018

I am not the leader

Registered to service registry
Watching znode c_0000000017

Received 7 documents to process
Received 7 documents to process
Received 7 documents to process

h-dependencies.jar

(base) harrisonli@Harrisons-MacBook-Pro-2 bin % cd /Users/harrisonli/IdeaProje
cts/DistributedSearch

(base) harrisonli@Harrisons-MacBook-Pro-2 DistributedSearch % java -jar target
/distributed.search-1.0-SNAPSHOT-jar-with-dependencies.jar 8082

log4j:WARN No appenders could be found for logger (org.apache.zookeeper.ZooKee
per).

1og4j:WARN Please initialize the log4j system properly.

1og4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more
info.

Successfully connected to Zookeeper

znode name /election/c_0000000019

I am not the leader

Registered to service registry

Watching znode c_0000000018

Received 7 documents to process
Received 7 documents to process
Received 7 documents to process

(base) harrisonli@Harrisons-MacBook-Pro-2 distributed-systems-leader-election
% cd /Users/harrisonli/IdeaProjects/DistributedSearch

(base) harrisonli@Harrisons-MacBook-Pro-2 DistributedSearch % java -jar target
/distributed.search-1.0-SNAPSHOT-jar-with-dependencies. jar 8083

log4j:WARN No appenders could be found for logger (org.apache.zookeeper.ZooKee
per).

log4j:WARN Please initialize the log4j system properly.

Tog4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more
info.

Successfully connected to Zookeeper

znode name /election/c_0000000020

I am not the leader

Registered to service registry

Watching znode c_0000000019

Received 6 documents to process
Received 6 documents to process
Received 6 documents to process

port 8080, 3 worker nodes on port 8081, 8082, 8083

Master node:

2- System DeSign Split computing task by

documents.

_ Worker nodes:

Compute term frequency of passed
ocuments for all search terms

Aggregate to compute
inverse document
frequency and sort the
score upon receiving
results from workers

Frontend Server:

Web based Ul in JS & html

User types search input
Http requests,
Using Protocol Buffer (el
to language compatibility)

(LI

Read from document repository
(File System)

ZooKeeper Level

Coordinators(Ma Workers
- Store all registered node address ster) Service Service

Registry Registry

- Reelect Leader once a master node failed

ZooKeeper Service Registry

0900 O

Actual Node (communicating thru getChildren, getData
NodeChildrenChanged to Znode)

/service
_regisgr
y/node1

/service
_regisgr
y/node2

/service_r

egisgry

/service_

regisgry/
node3

/service_

regisgry/
node4

Permanent Znode (upon reconnection, node keeps all data)

Ephemeral Znode (upon reconnection, node is deleted)

Node stores address info

3. Side Notes
Master-Worker architecture:
Leader Reelection Algorithm

Once a master node fails, the service registry must reelect a new leader.
If all nodes register a watcher process to listen to all the other nodes, the cost will be huge.

Instead, we have a cost efficient way by registering a watcher for each node to only listen to its predecessor. This way we only need to maintain a sorted
list, once new node joins or the failed node rejoins the system, increase its index.

The algorithm goes:

sort zookeeper node by index
if the node being watched failed is leader: e e e e Q
Its watcher becomes the new leader

else:

Find the node’s predecessor and register a new watcher

3. Side Notes
Some thoughts on the project

In real case, the master node and worker nodes are usually machines, rather
than a process. This system design simulates the situation where servers
communicates through http.

It is possible that the file system locates at another physical server or any
cloud server. The communication would not be simple as retrieving files in
local computer. Http request should be implemented.

In terms of scaling of service, it is possible that numbers of users using the
service at the same time, then the design needs load balancer between 1)
user and frontend service, and 2) frontend service and backend service.

3. Side Notes
Network Communication Choices

- Json is most common
- Human readable but no strict schema
- Msgis in plain text, so its network overhead is larger than binary array

- Protocol Buffer is another (Google)
- The benéefit is speed and easy communication between different programing languages

- Serializing Object
- Java Serializable object: Serializable interface

- Python: pickle package

- The benefit is having a smaller overhead and clear schema

